Fuzzy Integrals over Complete Residuated Lattices
نویسندگان
چکیده
The aim of this paper is to introduce two new types of fuzzy integrals, namely, ⊗-fuzzy integral and →-fuzzy integral, where ⊗ and → are the multiplication and residuum of a complete residuated lattice, respectively. The first integral is based on a fuzzy measure of L-fuzzy sets and the second one on a complementary fuzzy measure of L-fuzzy sets, where L is a complete residuated lattice. Some of their properties and a relation to the fuzzy (Sugeno) integral are investigated. Keywords— fuzzy measure, fuzzy integral, fuzzy quantifier.
منابع مشابه
On Convergence of Fuzzy Integrals over Complete Residuated Lattices
Recently we proposed a new type of fuzzy integrals defined over complete residuated lattices. These integrals are intended for the modeling of type ⟨1, 1⟩ fuzzy quantifiers. An interesting theoretical question is, how to introduce various notions of convergence of this type of fuzzy integrals. In this contribution, we would like to present some results on strong and pointwise convergence of the...
متن کاملFuzzy measures and integrals defined on algebras of fuzzy subsets over complete residuated lattices
This paper presents basic notions about fuzzy measures over algebras of fuzzy subsets of a fuzzy set. It also presents basic ideas on fuzzy integrals defined using these fuzzy measures. Definitions of new types of fuzzy measures and integrals are motivated by our research on generalized quantifiers. Several useful properties of fuzzy measures and fuzzy integrals are stated and proved. Definitio...
متن کاملAxiomatization of Fuzzy Attribute Logic over Complete Residuated Lattices
The paper deals with fuzzy attribute logic (FAL) and shows its completeness over all complete residuated lattices. FAL is a calculus for reasoning with if-then rules describing particular attribute dependencies in objectattribute data. Completeness is proved in two versions: classical-style completeness and graded-style completeness.
متن کاملGENERALIZED RESIDUATED LATTICES BASED F-TRANSFORM
The aim of the present work is to study the $F$-transform over a generalized residuated lattice. We discuss the properties that are common with the $F$-transform over a residuated lattice. We show that the $F^{uparrow}$-transform can be used in establishing a fuzzy (pre)order on the set of fuzzy sets.
متن کاملComplete relations on fuzzy complete lattices
We generalize the notion of complete binary relation on complete lattice to residuated lattice valued ordered sets and show its properties. Then we focus on complete fuzzy tolerances on fuzzy complete lattices and prove they are in one-to-one correspondence with extensive isotone Galois connections. Finally, we prove that fuzzy complete lattice, factorized by a complete fuzzy tolerance, is agai...
متن کامل